Research Centre Manufacturing and Materials Engineering

Magnetic Field Enabled Selective Metallisation of Dielectric Substrates

Sofya Danilova, John Graves and Andrew Cobley

ICT Evening Seminar, Harrogate, UK December 5th 2017

Agenda

- Applications of Selective Metallisation
- Previous research on the effects of a Magnetic Field on Electrochemical Deposition
- Selective Catalysation of a non-conductive substrate by application of a Magnetic Field
 - Concept
 - Synthesis of Magnetic-Catalytic Nanoparticles
 - Characterisation of Magnetic-Catalytic Nanoparticles
 - Selective catalysation and metallisation using Magnetic-Catalytic Nanoparticles
- Conclusions
- Future Work

The Importance of Selective Metallisation in the Electronics Sector

- Printed Circuit Boards
- Molded Interconnect Devices
- Micro-electronics
- Printed Electronics
- Wearable Technology
- RFIDs
-and many more

Effect of a Magnetic Field in Electrodeposition

Electromagnetic interactions

Magnetic fields induce the magnetohydrodynamic effect (MHD – effect)

Gradient magnetic fields induce a micro-MHD effect:

Schematic representation of a - MHD effect, b – micro-MHD effect.

L.M.A. Monzon, J.M.D. Coey, , Electrochemistry Communications, 42 (2014) 38-41

Research Centre Manufacturing and Materials Engineering

[1]] P. Dunne, J.M.D. Coey, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012) 1– 21.

[2] M. Uhlemann, K. Tschulik, A. Gebert, G. Mutschke, J Frohlich, A. Bund, X. Yang, K. Eckert, et al Eur. Phys. J. Spec. Top., 220 (2013) 287-302

[3] K. Tschulik, R. Sueptitz, J. Koza, M. Uhlemann, G. Mutschke, T. Weier, A. Gebert, L. Schultz, Electrochimica Acta, 56(1) (2010) 297-304

Effect of a Magnetic Field in Electrodeposition

Research Centre Manufacturing and Materials Engineering

Electrodeposition in a magnetic field has been shown to effect:

- Layer roughness
- Morphology
- Layer density
- Layer thickness
- Crystal structure
- Corrosion resistance

.....and can also enable some metal patterning

However the substrate must be *conductive*

PHYSICAL REVIEW B 85, 224411 (2012) **Patterning metallic electrodeposits with magnet arrays** Peter Dunne and J. M. D. Coey

Effect of a Magnetic Field in Electroless Plating

Research Centre Manufacturing and Materials Engineering

Cross-sectional morphology of Electroless Ni-B Deposit

Danilova, S; Bonin, L; Graves J E; Vitry, V, Cobley A J "The influence of a Gradient Magnetic Field on Ni-B electroless plating", paper in preparation

Effect of a Magnetic Field on Electrochemical Deposition - Recap

Previous work has shown that both electroplating and electroless plating can be influenced by the application of a Magnetic field

Electroplating

- Patterning possible but substrate must be conductive
- Layer roughness
- Morphology
- Layer density
- Layer thickness
- Crystal structure
- Corrosion resistance

Electroless Plating

- Few studies in this area
- Morphology and crystal structure
- Increased plating rate
- No studies on selective metallisation

Research Centre Manufacturing and Materials Engineering

Ni-B deposit – No magnetic field

Ni-B deposit – Applied magnetic field

Catalysation of a non-conductive substrate for Electroless Plating

Electroless plating on a non-conductive substrate requires the presence of a catalyst to initiate plating

Electroless Copper	25-60 minutes	30-70 ºC
Rinse	3 minutes	
(Accelerator	2 minutes	RT)
Rinse	5 minutes	
Catalyst / Activator	5 minutes	30-50 ºC
Pre-dip	1 minute	RT
Rinse	5 minutes	
Conditioner/Sensitizer	5 minutes	30-60 ºC

Selective Catalysation of a nonconductive substrate by application of a Magnetic Field – The Concept

Research Centre Manufacturing and Materials Engineering

If a catalyst can be designed to be attracted by a magnetic field and catalytic to electroless plating then selective metallisation of a non-conductive material is feasible

Aims of Phase 1 of research

- Design and synthesise magnetic/catalytic nanoparticles
- Demonstrate that magnetic/catalytic nanoparticles can be selectively deposited on a non-conductive substrate using a magnetic field
- Demonstrate the the magnetic/catalystic nanoparticles will initiate electroless copper deposition

Selective Catalysation of a non-**Research Centre Covent** Universi Manufacturing and conductive substrate by application Materials Engineering of a Magnetic Field – The Concept **Catalytic Shell** Synthesise a nanoparticle with a magnetic core and a catalytic shell Magnetic core Selectively deposit the catalyst on a non-conductive substrate using a magnetic field Magnet Selective deposition of catalyst in a magnetic field Selectively deposit electroless copper

Selective Cu Deposition

Synthesis of Magnetic-Catalytic Nanoparticles

Research Centre Manufacturing and Materials Engineering

Literature search identified a procedure for producing Ag-Fe₃O₄ nanoparticles

J. R. Chiou, B. H. Lai, K. C. Hsu, D. H. Chen, One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction, *J. Hazard. Mater.*, 248 (2013) 394-400.

Synthesis of Magnetic-Catalytic Nanoparticles

Research Centre Manufacturing and Materials Engineering

Synthesis of Ag-Fe Nanoparticles using Arginine as reducing agent

XRD Analysis determines that nanoparticles are $Ag-Fe_3O_4$

Synthesis of Magnetic-Catalytic Nanoparticles

Research Centre Manufacturing and Materials Engineering

Synthesis of Ag-Fe₃O₄ Nanoparticles using Arginine as reducing agent

SEM-EDX Confirms formation of Ag-Fe₃O₄ Nanoparticles but suggests 'composite' (not core-shell)

TEM Analysis of Fe₃O₄ and Ag-Fe₃O₄ Nanoparticles

Particle Size Analysis of Fe_3O_4 and Ag-Fe₃O₄ Nanoparticles

Research Centre Manufacturing and Materials Engineering

Increase in the formation of larger particles from 60 to 90 nm compared to the Fe_3O_{4} , where no particles larger than 70 nm are apparent

Are Ag-Fe₃O₄ Nanoparticles Magnetic and Catalytic?

Substrate after selective catalysation in Magnetic Field Catalyst is selectively deposited

Substrate after electroless copper plating Selective metallisation has occurred

SEM of electroless copper morphology Deposit is similar to Pd catalysed deposit although not as uniform

Ag-Fe₃O₄ Nanoparticle Catalyst Optimisation

Research Centre Manufacturing and Materials Engineering

Catalyst efficacy is effected by various parameters

Selective Catalysation of Ag-Fe₃O₄ Nanoparticles and Electroless Plating

Selective Metallisation using a Magnetic Field Conclusions

- 1. The synthesis of a Magnetic / Catalytic nanoparticles has been achieved
- 2. Analysis has shown that these nanoparticles are composed of Ag and Fe_3O_4
- 3. The nanoparticles are a composite of Ag and Fe_3O_4 (not core shell)
- 4. The composite Ag and Fe_3O_4 nanoparticles can be selectively deposited using a magnetic field
- 5. The composite Ag and Fe₃O₄ nanoparticles are catalytic to electroless copper plating

Selective Metallisation using a Magnetic Field Further Work

- Determine Magnetic properties of Ag-Fe₃O₄ catalytic nanoparticles
- 2. Synthesis of Cu-Fe₃O₄ catalytic nanoparticles
- 3. Elimination of Fe before deposition (by dissolution)
- 4. Determine process parameters
 - Catalyst operating parameters time, temperature, concentration etc.
 - What resolution is achievable?
 - Can more complex patterns be replicated?
- 5. Identify applications
- 6. Find commercial partners

Research Centre

Manufacturing and

Materials Engineering

Selective Metallisation using a Magnetic Field IP Protection

Coventry University has published a patent to cover this work

	(12) INTERNATIONAL APPLICATION PUBLISHED L (19) World Intellexual Property Organization Thiermational Bureau (3) International Publication Date 13 July 2017 (13.07.2017) WIPO P	NDER T	HE PATENT COOPERATION TREATY (PCT)
(51) (22) (25) (26) (30) (71) (72) (74)	International Power ClearRendom. C2DC 1474 (2006.01) CLEAR CAR (2006.03) C2DC 1474 (2006.01) CLEAR (2006.02) International Application Number FCTCIDED17(050.012017) Thing Lenguage E Luglish Photosite Language E Luglish Photosite Language E Luglish Photosite Language E Luglish Photosite Language Control (1997) (2016) Photosite Language Control (1997) (2016) Applement COVENTRY UNIVERSITY (1616.08); Pri- sy Street, Covery (Ver Shi (1018)) Interviewer, COULLY, Andrew, col. Coventy University, Street, Covery, West Midlank (CV 1971) (2018) Renew WLISON COUNS (BIMURINARI), Clarkes Heaves, 1489 Grand Charles Street, Birmingham West Mid- lank SJ 31T (2018).	(81) Du isis Bi Di Di Di Di Di Di Di Ni Ki Ki Ni Ni Ni Ni Ni Ni Ni Ni Ni N	Signated States (indexs otherwise indicated, for every of at instance) provession annihilation, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
(54)		0 93 10	<u>Fig. 2</u>

Research Centre Manufacturing and Materials Engineering

Thank for your Listening

Any Questions?