Calculating Specifying and Testing Electrical Characteristics of PCB's

Sept 2010

Neil Chamberlain

European Sales Manager www.polarinstruments.com

Speedstack PCB

15-

20

Frik 1

25

30

5F 50

1,40

50

45

40

35

Automatic impedance controlled PCB stackup design & documentation

Polar Instruments

1981 C3 C3

162 1089

ist page

30 1440

Cire

Pie page

0 0

13 0 0

0 0

Agenda

- •Why Controlled Impedance •Calculating Impedance -Modelling -FR4 Issues •Specify Impedance -Correct Calculations -Correct Documentation •Testing Impedance -Coupon Design **–**TDR Testing
 - -Testing for Loss

© Polar Instruments 2009 www.polarinstruments.com

Why Impedance Matching

- Controlling Signal Noise
- Signal Termination
 - Xaui
 - Rocket I/O
- Specification
 - USB 2
 - PCi Express
 - DDr 3
- RF Filtering

Accurate Impedance Calculation

- Simulate Trace Geometries
- Use Accurate Model

• Requires a 2d Field solver

Trapezoidal Model

- Two input parameters required for Trace Width
- Models the Print and Etch process within the PCB Manufacture
 Edge-Coupled Offset Stripline 1B1A

Edge-Coupled Offset Stripline 1B1A H2 Er2 U1 U1 H1 Er1 U1 W1www.polarinstruments.com

•These numbers can be provided by your PCB Manufacture

Solder Mask Modelling

- Solder mask has a large effect on impedance on surface traces
- Depending on Geometry can be as large as 5Ω

© Polar Instruments 2009 www.polarinstruments.com

Resign Modeling

- Both are Mixtures of Resin and Glass Fibers
 - Materials are non-homogenous
 - $-\epsilon_r$ specified for laminate is the bulk value
 - $-\epsilon_r$ for glass ~ 6.1 ϵ_r for epoxy ~ 3.2
 - So significant local variations occur for $\boldsymbol{\epsilon}_r$

© Polar Instruments 2009 www.polarinstruments.com

Typical E-field distribution

Microphotograph of FR4 structure

© Polar Instruments 2009 www.polarinstruments.com

FR4 structure

© Polar Instruments 2009 www.polarinstruments.com

11

Field in FR4 structure

Field distribution in Differential Pair

 Impedance value

 Increases as

 Er and C decrease

All Models are Wrong

But Some are Useful !!

Tolerance needs to be given on all Simulated results

Modelling Losses

- Designers need to concern themselves with Loss as well as Impedance
- Frequency Dependant Modelling
- Low Dk Material Modelling

Modelling Loss

Modelling Loss

So How do we get the modelled results to the fabricator

Document your stacks like this:

And like this:

Layer	Stack up	Supplier	Supplier Description	Impedance ID	Description	Processed Thickness	εr	Data Filenames
	Primary							
		Polar Samples	PE/001		Peelable Mask			Primary-Side-Peelable-P1.ger
		Polar Samples	ID/001		Screened Ident			Primary-Side-Ident-I1.ger
		Polar Samples	SM/001		Liquid Photolmageable Mask		4.00	Primary-Side-Solder-Mask-S1.ger
1		Polar Samples	FO/001	1	Copper Foil	1.40		Primary-Side-L1.ger
		Polar Samples	PP/001		PrePreg 1080	2.79	4.20	
2		Polar Samples	CO/020		FR4 Core	1.40 12.00	4.20	Ground-Plane/Inner-Tracking-L2.ger
3				2		1.40		Inner-Tracking-L3.ger
		Polar Samples	PP/003		PrePreg 3113	3.44	4.20	
		Polar Samples	PP/003		PrePreg 3113	3.44	4.20	
4		Dolor Complete	00/017		EB4 Care	1.40	4.20	3V3-Power-Plane-L4.ger
5		Polar Samples	00/01/		FR4 Cole	1.40	4.20	1V5/2V5-Power-Plane-L5.ger
		Polar Samples	PP/003		PrePreg 3113	3.44	4.20	
		Polar Samples	PP/003		PrePreg 3113	3.44	4.20	
6						1.40		Inner-Tracking-L6.ger
7		Polar Samples	CO/020	2	FR4 Core	12.00	4.20	Ground Plano/Impor Tracking 17 per
1		Polar Samples	PP/001	3	PrePreg 1080	2 79	4 20	Ground-Frankring-Frackrig-L7.98
8		Polar Samples	FO/001	4	Copper Foil	1.40	4.20	Secondary-Side-L8 oer
17.0		Polar Samples	SM/001		Liquid PhotoImageable Mask		4.00	Secondary-Side-Solder-Mask-S8 ger
	Secondary	. old. cumpico	0		Enquis r notombigouble music			

Copper Thickness = 11.200 | Dielectric Thickness = 51.340 | Overall Processed Thickness = 62.540

Impedance ID	Structure Name	Impedance Signal Layer	Ref. Plane 1 in Layer	Ref. Plane 2 in Layer	Lower Trace Width	Trace Separation	Ground Strip Separation	Lower Ground Strip Width	Calculated Impedance	Target Impedance	Tol (+/- %)	
1	Coated Microstrip 1B	1	2	0	4.25	0.00	0.00	0.00	49.38	50.00	10.00	
2	Offset Coplanar Strips 1B1A	3	2	4	19.00	0.00	8.00	15.00	27.84	28.00	10.00	
3	Diff Embedded Coplanar Waveguide With Lower Ground 1B1A	7	5	0	12.00	8.50	27.00	0.00	100.57	100.00	10.00	
4	Coated Microstrip 1B	8	5	0	20.00	0.00	0.00	0.00	75.30	75.00	10.00	

StackName: 8-Layer Sample Stack	Version: A Associated Documents:	Revision:	Modification:	Date of Revision:	Editor		
Author: James Stapley	Associated Documents.	2	3113 swp to 108	31/3/09	JAS	Page 1/1	Sneedstack 2009
Department: Engineering							Specustaen 2007
Site: Waterlooville							
www.polarinstruments.com							

Dolog

Even Document Flex Rigids Like this:

Why is stackup design and communication important?

- Time to market
- Complex designs
- Communication from designer to PCB fabricator
- Increasing impedance requirements
- Can be time consuming

© Polar Instruments 2009 www.polarinstruments.com

• Good communication saves costly rebuilds

Material Libraries

- Based on the parameters of actual material.
- Separated into material types
 - Cores
 - Prepregs
 - Foils, etc.

The info required for cores

1 ¥ 144											
ils Prepregs	RCCs Cores Solder Masks Ident	Inks Peelable Masks Coverlays									
Supplier	Supplier Description	Description	StockNumber	Dielectric Base 1	hickness Dielectric Finish	ed Thidme Dielectric Constant	Upper Cu Base	Thickness Lower Cu Base 1	Thickness Resin Content	Tg	
ISOLA	2-2165	De104/TS		0.254	0.254	4.71	0.018	0.018	47.4	140	
ISOLA	2-2165	De104/TS		0.254	0.254	4.71	0.035	0.035	47.4	140	
ISOLA	2-2165	De104/TS		0.254	0.254	4.71	0.07	0.07	47.4	140	
ISOLA	2-2157	De104/TS		0.3048	0.3048	4.72	0.018	0.018	48	140	
ISOLA	2-2157	De104/TS		0.3048	0.3048	4.72	0.035	0.035	48	140	
ISOLA	2-2157	De104/TS		0.3048	0.3048	4.72	0.07	0.07	48	140	
ISOLA	2-7628M	De104/TS		0.3556	0.3556	4.93	0.018	0.018	41.3	140	
ISOLA	2-7628M	De104/TS		0.3556	0.3556	4.93	0.035	0.035	41.3	140	
ISOLA	2-7628M	De104/TS		0.3556	0.3556	4.93	0.07	0.07	41.3	140	
ISOLA	2-7628+1-2125	De104/TS		0.4572	0.4572	4.86	0.018	0.018	44	140	
ISOLA	2-7628+1-2125	De104/TS		0.4572	0.4572	4.86	0.035	0.035	44	140	
ISOLA	2-7628+1-2125	De104/TS		0.4572	0.4572	4.86	0.07	0.07	44	140	
ISOLA	3-7628	De104/TS		0.51	0.51	4.96	0.018	0.018	39.6	140	
ISOLA	3-7628	De104/TS		0.51	0.51	4.96	0.035	0.035	39.6	140	
ISOLA	3-7628	De104/TS		0.51	0.51	4.96	0.07	0.07	39.6	140	
ISOLA	3-7628M	De104/TS		0.6096	0.6096	4.78	0.018	0.018	45.3	140	
							1				ЪĹ

Will it fit?!!

D.R.C. Stack Up Editor DRC: 3 Controlled Impedance -DRC Test Selection Design Logic Symmetry Copper Balance ✓ Board Thickness Manufacturing Tests 2.000 Min. Gap Width Min. Trace Width Aspect Ratios Mechanical Drill Buried Laser Microvia ✓ Trace Blind Laser Microvia Excess Besin Symmetry : Different Material Types Symmetry : Different Material Types Copper not Balanced Check that it meets design rules Board Thickness © Polar Instruments 2009 ial la la 25 www.polarinstruments.com 2.000

Adding a controlled impedance structure

Finished thickness calculation:

		Prepreg Corrections	-OX
		Percentage Copper To Be Embedded in © Set by Layer type	Prepreg
	2.000	Signal Layer	% 75
		Mixed Layer	% 15
	Y and the second	Plane Layer	% 10
Calculate finish	ned	O Proportional to Coverage	
thickness (choic	e of	Copper Finishing	
methods).		Copper to be Added	АЬЬ 0.7000
		Excess Resin Test	
	31,000	Minimum Excess Resin	% 15
	4.800	Cance	
	0.600 5.000		
	3 200		
	1 900		17
© Polar Instruments 2000			
www.polarinstruments.com	2.000		

Drill documentation:

		E Drill Properties		- 🗆 🗵
	2.000	Electrical Layers First Electrical Layer No 1 Second Electrical Layer No 2	Trace Column 4	Apply Close
		Drill Information		
Dogument		C Mechanical		
Document		C Laser		
conventional la	ser	☑ Through Plated		
		Data Filenames		
blind buried an	ld states and states a			
stacked vias				
Stacked vias.		Hole Information		
	0.000	Hole Count		
	31.000	1000		
		Different Hole Sizes		
	4.800	Minimum Hole Size		
	0.600	0.0060		
	5.000			li.
	0.600			
	3.200			
		V LILIL		
	1.900			
© Polar Instruments 2009		In/In/In		28
www.polarinstruments.com	2.000			

Coupon Testing

TDR Testing

- Testing is not difficult or Time consuming
- Required for Process conformance to Specification.
- MVT not DVT.

The Future of testing:- Atlas

- New high speed busses in Multi GHz range
 - SuperSpeed USB 3.0
 - PCI Express Gen 2.0

- Differential Signalling techniques allow the continued uses of FR4
- Requires accurate control of tranmission line losses

The Future of testing:- Atlas

Atlas Coupon Test

Conclusion

- Accurate Modelling is as important as final testing.
- Material selection is critical to the performance of the final product
- Clear Documentation is imperative

• Testing final product is made easy through robust test system.

Thank You

• Questions?....

Neil@polarinstruments.com

www.polarinstruments.com

