Coventry University

Dr Mahsa Baniasadi

Department of Health and Life Sciences

Bioleaching of electronic waste

Knowledge Transfer Partnership

Innovate UK

Metal recovery from E-waste

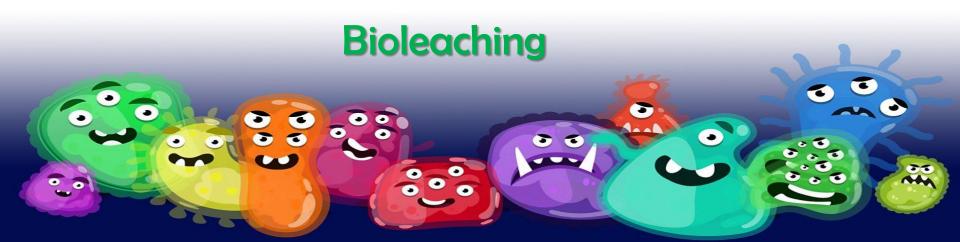
WEEE production 44.7 Mt annually in the world and 2 Mt in the UK:

Urban mining and secondary resources
 Economic and environmental incentives

_				
	Metal	Ores (%) ^a	PCBs (%) ^b	_
	Copper	0.5-3.0	12.0-29.0	
	Zinc	1.7-6.4	0.1-2.7	Bizzo et al. 2014,
	Tin	0.2-0.85	1.1-4.8	Characterization of Printed Circuit Boards for Metal and
	Lead	0.3-7.5	1.3-3.9	Energy Recovery after Milling
	Iron	30-60	0.1-11.4	and Mechanical Separation, Materials, 7: 4555-66.
	Nickel	0.7-2.0	0.3-1.6	,
	Gold	0.0005	0.0029-0.112	
	Silver	0.0005	0.01-0.52	

Part of ICT supply chain

"The European Union directive 2012/19/EU is based on the <u>Extended Producers</u> <u>Responsibility</u>, which considers the manufacturers as responsible for e-waste management"


Methods for metal recovery

Conventional methods

Pyrometallurgy
Hydrometallurgy

Sustainable method

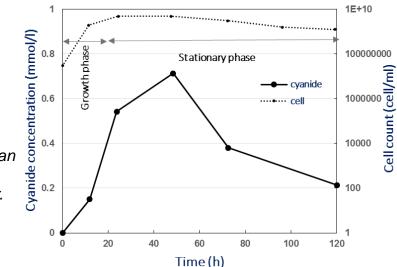
Bioleaching

Production of acids and ligands with microorganism:

✓ Acidolysis

Organic and inorganic acid production

- Complexolysis
 Production of chelating agent
- ✓ Redoxolysis


Enhancement of available ions in the solution

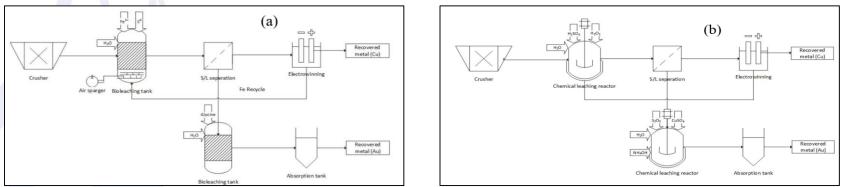
Biocyanidation

- Gold recovery from mineral ores by cyanide is common practice
- Cyanogenic bacteria produce cyanide in a reasonable amount
- ✓ Intrinsic ability of microorganisms to degrade cyanide

Kita, Y., et al. (2009) Enhancement of Au Dissolution by Microorganisms Using an Accelerating Cathode Reaction. Metall. Mater. Trans. B 40, 39–44.

Metal-cyanide complex formation

Elsner's equation


Formation of dicyanoaurate anions:

4 Au(s) + 8 NaCN(aq) + $O_2(g)$ + 2H₂O(I) \rightarrow 4 Na[Au(CN)₂](aq) + 4 NaOH(aq)

Biocyanidation vs. Chemical cyanidation

Techno-economic assessment of chemical biological and combined process

Isildar A. 2018. Metal Recovery from Electronic Waste: Biological Versus Chemical Leaching for Recovery of Copper and Gold. CRC Press.

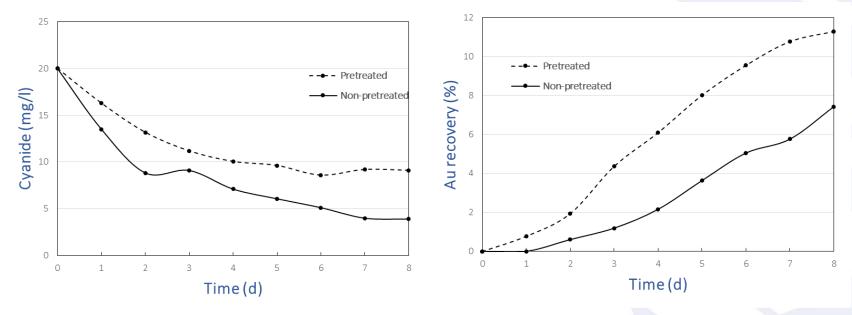
Technology	Operational	Investment	Total	Net	Return of interest	Climate	change
	cost	cost	cost	revenue		contribution	
		(euro/kg PC	:В)		year	Kg CO₂/Kg P	СВ
Biological	0.159	0.457	0.616	4.41	5.1	8.26	
Chemical	0.224	0.446	0.670	8.97	2.4	14.6	
Hybrid	0.232	0.777	1.008	8.25	4.3	11.6	

Improving recovery by biocyanidation

- >Non-metal content removal
- Necessity of base metal recovery in first steps
- Effect of operation of parameters
- Effect of process configuration

Non-metal content removal

Shaking table
 Electrostatic separation
 Magnetic separation

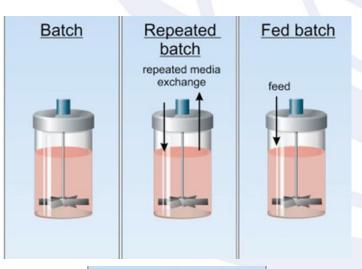


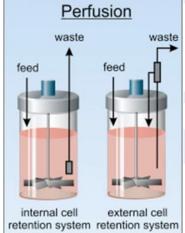
Base metal recovery

Base metals always win the competition versus noble metals

Natarajan, G., Ting, Y.-P., (2014) Pre-treatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour. Technol. 152, 80–85.

Effect of operational parameters


Necessity of process optimisation


- Glycine concentration
- pH (chemical and biological effect)
- Pulp density (tolerance to toxic)
- Dissolved oxygen
- Particle size

Process configuration

- One stepTwo step
- Spent medium
- Reactor configuration
 - Batch
 - ✓ Fed-batch
 - ✓ Continuous

Metal extraction from the solution

- Merrill-Crowe process
- Carbon active
- ➢ Ion exchange
- Electrowinning

